Lecture Notes 2-2: The Limit of a Function

Things to Know:

- The intuitive definitions of a limit and a onesided limit.
- How to find a (one-sided) limit using a calculator or the graph of the function, including infinite limits.
- How to find limits for piecewise-defined
functions.
- How to distinguish between the various ways a limit may not exist.
- Understand how using a calculator can give an incorrect answer when evaluating a limit.

Intuitive Idea and Introductory Examples
(Note that this is motivated by our discussion of tangent lines and instantaneous velocity.)
Say: "the limit of $f(x)$, as x approaches a is $L^{\prime \prime}$
Write: $\lim _{x \rightarrow a} f(x)=L$
It means: as x gets closer and closer to $a, f(x)$ can be made arbitrarily close to the number L.

EXAMPLE: Use calculation to guess $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-x-2}$.

x	1	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5	3
$f(x)$	0.5	0.4	0.34483	0.33445	0.33344	DNE	0.33322	0.33223	0.32258	0.28571	0.25

GUESS: $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-x-2}=0.3333 \ldots=1 / 3$.

What does the table above tell you about the graph of $y=\frac{x-2}{x^{2}-x-2}$?

$$
\begin{aligned}
& \text { while there is a "hole" } \\
& \text { at } x=2 \text {, close to } x=2 \\
& \text { the } y \text {-values get } \\
& \text { close to } 1 / 3 \text {. }
\end{aligned}
$$

2-2 The Limit of a Function

EXAMPLE: [Why do all the calculation? Just pick a number really close to "a," right???!!]

Use calculation to guess $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$.

Jill just picks numbers super-close to $a=0$, say ± 0.000001 :

t	-0.000001	0	0.000001
$f(t)$	0	DNE	0

Hint: Never believe Jill! Why can't this be right and what went wrong?
 numerator isn't like Also the ever exactly zero! The numerator gets so small my calculator thinks it's 3 cero. him ... what Stow D Phis limit be? $L=1 / 6$ is $m y$ guess
EXAMPLE: [Sample points may not illustrate the big picture. Theory will be useful.] using the graph...?
Use calculation to guess $\lim _{\theta \rightarrow 0} \sin \left(\frac{\pi}{\theta}\right)$.

x	-0.1	-0.001	-0.0001	0	0.0001	0.001	0.01
$f(x)$	0	0	0	dne	0	0	0

GUESS: $\lim _{\theta \rightarrow 0} \sin \left(\frac{\pi}{\theta}\right)=0$
Do you b believe your answer? No way! as $\theta \rightarrow 0, \frac{\pi}{\theta} \rightarrow \infty \begin{aligned} & \text { (larger } \\ & \text { larger) }\end{aligned}$
So $\sin \left(\frac{\pi}{\theta}\right)$ SHouLD be oscillating along the interval $[-1,1]$.
Also
the graph looks like:

Uses a calculator

Practice Problems

1. For each problem below, fill out the chart of values, then use the values to guess the value of the limit. Finally rate your confidence level on a 0 to 3 scale where ($0=I$ 'm sure this is wrong) and (3 = I'm sure this is right.)
(a) $\lim _{\theta \rightarrow 0}=\frac{\sin \theta}{\theta}=1$

x	-1	-0.5	-0.1	-0.001	0	0.001	0.1	0.5	1
$f(x)$	0.8415	0.9589	0.9983	0.9999	DNE	0.9999	0.9983	0.9589	0.8415

(b) $\lim _{x \rightarrow 2} f(x)=\mathrm{DNE}$ where $\begin{cases}|x-1| & x \leq 2 \\ x+1 & x>2\end{cases}$
confidence? \qquad

x	1	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5	3
$f(x)$	0	0.5	0.9	0.99	0.999	1	3.001	3.01	3.1	3.5	4

(c) $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=2$
confidence?

$x \rightarrow 0$	x	0.0001	0.001	0.01	0.1	0.5					
x	-0.5	-0.1	-0.01	-0.001	-0.0001	0	0.001				
$f(x)$	1.264	1.813	1.98	1.998	1.9998	dne	2.0002	2.002	2.02	2.214	3.44

DEFINITIONS:

Say: "the limit as x approaches a on the left is L "; Write: $\lim _{x \rightarrow a^{-}} f(x)=L$

It means as x approaches a from below or for x 's smaller than $a, f(x)$ can be made arbitrarily close to L.

Say: "the limit as x approaches a on the right is L "; Write: $\lim _{x \rightarrow a^{+}} f(x)=L$

It means as x approaches a from above or for x^{\prime} s larger than $a, f(x)$ can be made arbitrarily close to L.

EXAMPLE: The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} f(x)=16$
(b) $\lim _{x \rightarrow 4^{+}} f(x)=4$
(c) $\lim _{x \rightarrow 4} f(x)=D N E$
(d) $f(4)=16$
(e) $\lim _{x \rightarrow 8} f(x)=-5$
(f) $f(8)=-5$

EXAMPLE: The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} f(x)=\infty$
(b) $\lim _{x \rightarrow 4^{+}} f(x)=-\infty$
(c) $\lim _{x \rightarrow 4} f(x)=D N E$
(d) $f(4)=D N E$
(e) $\lim _{x \rightarrow 8} f(x)=0$
(f) $f(8)=10$

Write the equation of any vertical asymptote:

$$
x=4
$$

2. Sketch the graph of an function that satisfies all of the given conditions. Compare your answer with that of your neighbor.

Many different answers

here.

3. Determine the limit. Explain your answer.
(a) $\lim _{x \rightarrow 5^{+}} \frac{2+x}{x-5}=\infty$

Explanation: As $x \rightarrow 5^{+}$, the numerator $2+x$ approaches 7. The denominator, $x-5$ approaches 0 but is always positive (a little larger than zero). Thus the quotient (a fixed positive number / a very small positive number) approaches to infinity.
(b) $\lim _{x \rightarrow 5^{+}} \frac{2+x}{5-x}=-\infty$

Explanation: In this case, the denominator approaches 0 but is always negative. Thus the quotient is negative.
(c) $\lim _{x \rightarrow(\pi / 2)^{+}} \frac{\sec x}{x}=\lim _{x \rightarrow(\pi / 2)^{+}} \frac{1}{x \cos x}=\infty$

Explanation: As $x \rightarrow \pi / 2^{+}$, we know $\cos x \rightarrow 0^{+}$. So the quotient approaches infinity.

