LECTURE NOTES 2-2: THE LIMIT OF A FUNCTION

Things to Know:

- The intuitive definitions of a *limit* and a *one-sided limit*.
- How to find a (one-sided) limit using a calculator or the graph of the function, including infinite limits.
- How to find limits for piecewise-defined

functions.

- How to distinguish between the various ways a limit may *not* exist.
- Understand how using a calculator can give an incorrect answer when evaluating a limit.

Intuitive Idea and Introductory Examples

(Note that this is motivated by our discussion of tangent lines and instantaneous velocity.)

Say: "the limit of f(x), as x approaches a is L''

Write: $\lim_{x \to a} f(x) = L$

It means: as x gets closer and closer to a, f(x) can be made arbitrarily close to the number L.

EXAMPLE: Use calculation to guess $\lim_{x \to 2} \frac{x-2}{x^2 - x - 2}$.

x	1	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5	3
f(x)	0.5	0.4	0.34483	0.33445	0.33344	DNE	0.33322	0.33223	0.32258	0.28571	0.25

GUESS: $\lim_{x \to 2} \frac{x-2}{x^2 - x - 2} = 0.3333... = 1/3.$

What does the table above tell you about the graph of $y = \frac{x-2}{x^2-x-2}$?

while there is a "hole" at x= 2, close to x=2 the y-values get close to 1/3.

EXAMPLE: [Why do all the calculation? Just pick a number really close to "a," right???!!]

Use calculation to guess
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$
.

Jill just picks numbers super-close to a = 0, say ± 0.000001 : $\begin{vmatrix} t & -0.000001 & 0 & 0.000001 \\ f(t) & 0 & DNE & 0 \end{vmatrix}$ GUESS: $\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = 0$. \pounds Wrong \int_{t}^{t}

Practice Problems

For each problem below, fill out the chart of values, then use the values to *guess* the value of the limit. Finally rate your confidence level on a 0 to 3 scale where (0 = I'm sure this is wrong) and (3 = I'm sure this is right.)

(a) $\lim_{\theta \to 0} = \frac{\sin \theta}{\theta} = 1$ confidence?													
	x	-1	-0.5	-0.1	-0.001	0	0.001	0.1	0.5	1]		
	f(x)	0.8415	0.9589	0.9983	0.9999	DNE	0.9999	0.9983	0.9589	0.8415			

(b)	b) $\lim_{x \to 2} f(x) = \bigcup_{x \to 1} \operatorname{where} \begin{cases} x - 1 & x \le 2\\ x + 1 & x > 2 \end{cases}$ $\boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$												
	x	1	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5	3	
	f(x)	0	0.5	0.9	0.99	0.999	1	3.001	3.01	3.1	3.5	4	

.

(c)
$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} =$$

 $\mathbf{2}$

confidence?

<i>,</i>	$x \rightarrow 0$	x										
	x	-0.5	-0.1	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01	0.1	0.5
	f(x)	1.264	1.813	1.98	1.998	1.9998	dne	2.0002	2.002	2.02	2.214	3.44

DEFINITIONS:

Say: "the limit as *x* approaches *a* on the left is *L*"; Write: Write:

It means as x approaches a from below or for x's smaller than a, f(x) can be made arbitrarily close to L.

Say: "the limit as *x* approaches *a* on the right is *L*";

Write: $\lim_{x \to a^+} f(x) = L$

 $\lim f(x) = L$

It means as x approaches a from above or for x's larger than a, f(x) can be made arbitrarily close to L.

EXAMPLE: The function g(x) is graphed below. Use the graph to fill in the blanks.

EXAMPLE: The function g(x) is graphed below. Use the graph to fill in the blanks.

Write the equation of any vertical asymptote:

X= 4

4

2. Sketch the graph of an function that satisfies *all* of the given conditions. Compare your answer with that of your neighbor.

- 3. Determine the limit. Explain your answer.
 - (a) $\lim_{x \to 5^+} \frac{2+x}{x-5} = \infty$

Explanation: As $x \to 5^+$, the numerator 2 + x approaches 7. The denominator, x - 5 approaches 0 but is always positive (a little larger than zero). Thus the quotient (a fixed positive number / a very small positive number) approaches to infinity.

(b)
$$\lim_{x \to 5^+} \frac{2+x}{5-x} = -\infty$$

Explanation: In this case, the denominator approaches 0 but is always negative. Thus the quotient is negative.

(c) $\lim_{x \to (\pi/2)^+} \frac{\sec x}{x} = \lim_{x \to (\pi/2)^+} \frac{1}{x \cos x} = \infty$

Explanation: As $x \to \pi/2^+$, we know $\cos x \to 0^+$. So the quotient approaches infinity.